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We present a growth model with interdependencies in the heterogeneous technological

progress, physical capital and stock of knowledge that yields a growth-initial equation

that can be taken to the data. We then use data on EU-NUTS2 regions and a correlated

random effects specification to estimate the resulting spatial Durbin dynamic panel model

with spatially weighted individual effects. QML estimates support our model specification

against simpler alternatives that impose an homogeneous technology and limit the sources

of spatial externalities. Also, our results indicate that the level of GDP per capita of the
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neighbours.
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1 Introduction

Historically, the empirical economic growth literature consisted mostly of “aspatial empirical

analyses that have ignored the influence of spatial location on the process of growth” (De Long

and Summers, 1991; Fingleton and López-Bazo, 2006, p. 178). In the last two decades, however,

a number of studies seek to incorporate “spatial effects” in the standard (i.e., non-spatial)

economic growth models. In particular, the idea that the spatial location of an economy may

drive its economic growth has been developed using models of absolute location, which account

for the location of one economy in the geographical space, and models of relative location,

which account for the location of one economy with respect to the others. Econometrically,

these two types of models are closely related to the concepts of spatial heterogeneity and spatial

dependence (Abreu et al., 2005).

Although spatial heterogeneity is usually associated with parameter heterogeneity (see e.g.

Ertur and Koch, 2007; Basile, 2008), the most common approach in the literature is to allow

for unobserved differences using panel data (Islam, 1995; Elhorst et al., 2010). Also, knowledge

spillovers are the main mechanism employed to incorporate interactions between economies into

the Solow-Swan neoclassical growth model (López-Bazo et al., 2004; Egger and Pfaffermayr,

2006; Pfaffermayr, 2009, 2012). It is interesting to note, however, that these two streams of the

literature have developed rather separately. Notable exceptions include Elhorst et al. (2010),

who consider the extension of the model proposed by Ertur and Koch (2007) to panel data;

Ho et al. (2013), who consider an ad-hoc extension of the model proposed by Mankiw et al.

(1992) that includes a spatial autoregressive term and a spatial time lag term; and Yu and Lee

(2012), who, using a simplified version of the technology assumed by Ertur and Koch (2007),

derive a growth model with spatial externalities based on the model of Mankiw et al. (1992).

This paper aims to contribute to this limited literature by considering a growth model with

spatial heterogeneity and spatial externalities that nests the models introduced by Islam (1995),

López-Bazo et al. (2004) and Ertur and Koch (2007).

To be precise, we present a growth model with interdependencies in the (heterogeneous)
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technological progress, physical capital and stock of knowledge.1 The basic framework is similar

to that of Ertur and Koch (2007), but we consider additional sources of externalities across

economies. While they assume that the technological progress depends on the stock of physical

capital and the stock of knowledge of the other economies, we also consider the role of both the

physical capital (López-Bazo et al., 2004; Egger and Pfaffermayr, 2006) and the (unobserved)

initial level of technology (De Long and Summers, 1991; LeSage and Fischer, 2012) of the

other economies. Moreover, we do not assume a common exogenous technological progress but

account for heterogeneity in the initial level of technology, which here is interpreted as a proxy

for total factor productivity (Islam, 1995).

Having presented our model, we then derive the steady-state equation and a growth-initial

equation that can be taken to data. This is where the generality of our model comes at a

cost, since not all the parameters of interest are identified (a limitation that also arises in the

benchmark model of Ertur and Koch 2007). In essence, we cannot separate the (direct) effect

that, as an input of the production function, the stock of physical capital has on the output from

the (indirect) effect that it has as a driver of the technology (or we cannot separate the effect

that the own stock of physical capital has on the output –via the technology– from that of the

neighbouring economies). This means that, although the models of Islam (1995), López-Bazo

et al. (2004) and Ertur and Koch (2007) are nested in ours, we can only statistically reject the

validity of that of Islam (1995) and López-Bazo et al. (2004). Still, we argue that simple changes

in the model specification (e.g., introducing the stock of physical capital lagged one period in

the technological progress, rather than using its current value) and/or appropriate restrictions

on the set of parameters (as e.g. Ertur and Koch 2007 do) may address this limitation. We

illustrate our argument by constraining some of the parameters to be consistent with either the

model of López-Bazo et al. (2004) or that of Ertur and Koch (2007).

The econometric specification of the resulting growth-initial equation corresponds to the

spatial Durbin dynamic panel model (see also Elhorst et al., 2010; Yu and Lee, 2012; Ho et al.,

2013), but with spatially weighted individual-specific effects. Thus, given the obvious interest

1It is worth noting that the model can easily be extended to incorporate the role of human capital (López-
Bazo et al., 2004; Fingleton and López-Bazo, 2006). We leave this issue for future research.
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in distinguishing the individual effects from their spatial spillovers, we resort to a correlated

random effects specification (Miranda et al., 2017a,b). In particular, we estimate our growth-

initial equation by Quasi-Maximum Likelihood (see also Lee and Yu, 2016) using EU-NUTS2

regional data from Cambridge Econometrics. We use regional data because, as López-Bazo

et al. (2004, p. 43) argue, once it is taken on board that “[e]conomies interact with each other

(...), linkages are [likely] to be stronger [between close-by regions] than across heterogeneous

countries”.

We find evidence of “observed” technological interdependences in the output per capita

of the EU regions, that is, a positive and significant impact of the level of technology of

the neighbouring regions. However, there is also evidence of “unobserved” technological

interdependences in the EU regions (i.e., spatial contagion in the “unobserved productivity”

accounted for the individual effects of the model). In particular, estimates of the individual

effects and their spatial spillovers indicate that the richest (poorest) EU regions are likely

to stand rich (poor) because of their higher (lower) “unobserved productivity” and/or higher

(lower) spillovers. Lastly, our simple identification strategy produces estimates of the implied

parameters that support our model specification against that of Islam (1995) and López-Bazo

et al. (2004). However, our results are unclear about what technology, the one assumed by

López-Bazo et al. (2004) or that assumed by Ertur and Koch (2007), fits the data better.

The rest of the paper is organised as follows. In section 2 we present the model. In section

3 we discuss the data and the estimation results. Section 4 concludes.

2 The Model

2.1 Technological interdependencies in growth

Our starting point is the Solow growth model originally proposed by Mankiw et al. (1992)

using cross-section data and extended later by Islam (1995) to panel data (see also Barro and

Sala-i-Martin, 2003). Let us then consider a Cobb-Douglas production function for region i in
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time t:

Yit = AitK
α
itL

1−α
it , (2.1)

where Yit denotes output, Kit physical capital (α is thus the capital share or output elasticity

parameter), Lit labour, and Ait technology. All the variales are in levels and there are constant

returns to scale in production. Also, while output, capital and labour are typically assumed to

be observable, technology is assumed to be (partially) unobservable. Mankiw et al. (1992), for

example, assume that lnA = a+ ε, where a is a constant term and ε is the standard i.i.d error.

For the purposes of this paper, a major feature of this model is that technology is

assumed to grow exogenously and at the same rate in all regions. This rules out the

existence of knowledge spillovers arising from technological interdependences between the

regional economies. However, accounting for technological interdependences and knowledge

spillovers is critical when analysing how “the relative location of an economy affects economic

growth” (Elhorst et al., 2010). In the literature, depending on whether knowledge spillovers turn

out to be “local” or “global” (Anselin, 2003), we find two main approaches to the introduction

of spatial externalities in the Solow growth model.

On the one hand, López-Bazo et al. (2004) and Egger and Pfaffermayr (2006) consider

growth models where the knowledge spillovers are local in nature, in the sense that they

are limited to the neighbouring regions (at least initially).2 To be precise, in López-Bazo

et al. (2004) technology is assumed to depend on both the physical and human capital of the

neighbouring regions, whereas in Egger and Pfaffermayr (2006) is assumed to grow exogenously

and at the same rate in all regions (as in Mankiw et al. 1992 and Islam 1995), so that the

externalities arise from the assumption that total factor productivity depends on the capital-

labour ratio of the region and the spatially weighted capital-labour of the other regions. Ertur

and Koch (2007), on the other hand, assume that the technological progress of an economy

depends on the stock of physical capital per worker in that economy as well as the stock

of knowledge of the other economies. More specifically, they assume that the technology of

an economy is a geometrically weighted average of the technology of the other economies,

2See also Fingleton and López-Bazo (2006), Pfaffermayr (2009) and Pfaffermayr (2012).
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thus making knowledge spillovers to spread over all the regions (and hence become “global”).

However, it is still assumed that “some proportion of technological progress is exogenous and

identical in all countries” [p. 1036].

In this paper, we extend the model of Ertur and Koch (2007) by introducing spatial

dependence in the stock of capital, as well as heterogeneity and spatial dependence in the

exogenous technological progress (while holding the assumption that the technological progress

of an economy depends on the stock of knowledge of the other economies). In this vein,

our assumed technology combines the alternative sources of spatial externalities considered in

models of relative location with the unobserved heterogeneity that characterises the models of

absolute location (Abreu et al., 2005). In particular, our model shares with that of Ertur and

Koch (2007) the main source of parameter heterogeneity. Namely, the speed of convergence

to the steady state, as discussed below. Yet we eventually estimate a constrained version in

which the speed of convergence is identical for all economies (Elhorst et al., 2010; Yu and

Lee, 2012). In particular, the econometric specification corresponds to a variant of the spatial

Durbin dynamic panel model recently considered by Lee and Yu (2016) that includes not only

individual-specific effects but also their spatial spillovers (Miranda et al., 2017a).3

Next we derive our empirical specification, which adopts the form of a growth-initial

equation. To a large extent, our approach follows the steps of Ertur and Koch (2007). In

particular, we first discuss and motivate the assumed technology, then we obtain the output

per worker equation at the steady state, and finally the growth-initial equation.

2.2 Technology

Let us denote by Ωit the exogenous technological progress and by kit =
Kit

Lit
the level of physical

capital per worker (of region i in period t). Ertur and Koch (2007, p. 1036) assume that the

3As Basile (2008, p. 532-533) points out, “the local Spatial Durbin Model (...) proposed by Ertur and Koch
(2007) is a general and flexible specification, since it allows identification of both spatial-interaction effects and
parameter heterogeneity (...). In essence, this is the model considered here. The global Spatial Durbin Model
(...) represents a less general specification, because it imposes the restriction of parameter homogeneity”. In
essence, this is the model we estimate. Lastly, “[t]he model proposed by López-Bazo et al. (2004) (..) imposes
a further restriction on the parameters since the spatial lags of the structural characteristics of the regions are
not included” (this also applies to the model proposed by Egger and Pfaffermayr 2006).
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technology of region i in period t is given by

Ait = Ωitk
φ
it

N∏
j 6=i

A
γwij
jt , (2.2)

where “the parameter φ describes the strength of home externalities generated by physical

capital accumulation” (0 ≤ φ < 1) and “the degree of [regional] technological interdependence

generated by the level of spatial externalities is described by γ” (0 ≤ γ < 1). Notice that the

spatial relation between region i and its neighbouring regions is represented by a set of spatial

weights or “exogenous friction terms” wij, with j = 1, . . . , N , that are assumed to satisfy the

following properties: wij = 0 if i = j, 0 ≤ wij ≤ 1, and
∑
j 6=i

wij = 1 for i = 1, . . . , N . Lastly,

Ertur and Koch (2007) assume that Ωit = Ωt = Ωt=0 exp(µt), where µ is the constant rate of

growth of the exogenous technological progress. Therefore, the technology eventually assumed

is Ait = Ωt=0 exp(µt)kφit

N∏
j 6=i

A
γwij
jt .

However, as previously pointed out, there are alternative approaches to the inclusion of

knowledge spillovers in the Solow model. In a series of papers, López-Bazo et al. (2004, p. 46),

Egger and Pfaffermayr (2006), Fingleton and López-Bazo (2006) and Pfaffermayr (2009, 2012)

argue that the physical (and human) capital may be an alternative source of externalities, “[t]he

reasoning behind such spillovers [being] basically the diffusion of technology from other regions

caused by investments in physical (...) capital”. In mathematical terms, such a technology may

adopt the following functional form:

Ait = Ωt=0 exp(µt)
N∏
j 6=i

k
γwij
jt , (2.3)

where, for the sake of comparability, we have used the same notation as in 2.2. However,

the interpretation of the parameter γ (“assumed to be positive”) is different here, for it now

“measures the [strength of the] externality across economies” originated from variations in

physical capital (López-Bazo et al., 2004; Fingleton and López-Bazo, 2006, p. 46). It is also

important to stress that these papers maintain the assumption of an homogeneous exogenous
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technological progress growing at a constant rate, i.e., Ωit = Ωt=0 exp(µt).

Our assumed technology features those displayed in 2.2 and 2.3. However, we depart

from these studies in the assumptions they made with respect to the exogenous technological

progress. First, they assume that it is homogeneous across regions. However, as Mankiw et al.

(1992, p. 6) point out, “the Ωt=0 term reflects not just technology but resource endowments,

climate, institutions, and so on; it may therefore differ across countries”. In line with this

argument, we introduce regions’ heterogeneity into the definition of the exogenous technological

progress by assuming that Ωit = Ωi0 exp(µt).4 (Lee and Yu, 2016; Miranda et al., 2017a).

Second, as Islam (1995, p. 1149) points out, Ωi0 “is an important source of parametric

difference in the aggregate production function across [regions]”. Econometrically, it can be

interpreted as an individual-specific effect (possibly correlated with some of the covariates in the

initial-growth specification eventually derived). Economically, it is “a measure of efficiency with

which the [regions] are transforming their capital and labor resources into output and hence

is very close to the conventional concept of total factor productivity” [p. 1155-1156]. This

interpretation is behind our second departure from the models of López-Bazo et al. (2004),

Ertur and Koch (2007) and others, since opens the door to consider productivity spillovers as

an additional source of spatial externalities (LeSage and Fischer, 2012; Miranda et al., 2017b).

As De Long and Summers (1991, p. 487) point out, “it is difficult to believe that Belgian

and Dutch or US and Canadian economic growth would ever significantly diverge, or that

substantial productivity gaps would appear within Scandinavia”.

All in all, a production technology that may account for these alternative sources of spatial

dependence is the following:

Ait = Ωit

N∏
j 6=i

Ω
γ1wij
jt kφit

N∏
j 6=i

k
γ2wij
jt

N∏
j 6=i

A
γ3wij
jt (2.4)

with Ωit = Ωi0 exp(µt) and Ωi0 non-observable (which is why Ωit does not have a coefficient in

4Alternative ways of modelling the exogenous technological progress are Ωit = Ωt=0 exp(µit) and Ωit =
Ωi0 exp(µit). However, these proposals would considerably increase the number of parameters of the model
(by more than N , since it can be shown that the balanced growth rate becomes heterogeneous too) and make
identification difficult, if not impossible
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2.4). Notice that −1 ≤ γ3 ≤ 1 and γ2 > 0 play the same role as γ in 2.2 and 2.3, respectively,

whereas γ1, can be interpreted as the degree of technological interdependence generated from

the (unobserved) productivity spillovers. In particular, notice that γ1 = φ = γ2 = γ3 = 0 would

lead us to the model proposed by Islam (1995), γ1 = φ = γ3 = 0 (and possibly γ2 6= 0) to the

model proposed by López-Bazo et al. (2004), and γ1 = γ2 = 0 (and possibly φ 6= 0) to the

model proposed by Ertur and Koch (2007). However, as shown by Miranda et al. (2017a), the

fact that γ1 6= 0 cannot be used to discriminate between these models because they are actually

observationally equivalent. Moreover, as discussed below, the parameters φ and γ2 may not be

identified. Therefore, whereas a test of γ3 = 0 suffices to support our model specification (if

rejected) against that of Islam (1995) and López-Bazo et al. (2004), discriminating empirically

between our model and that of Ertur and Koch (2007) requires of additional identification

conditions.5

2.3 The production function

In order to obtain the explicit form of the Cobb-Douglas production function in 2.1 given our

assumed technology, let us consider 2.4 expressed in logs and matrix form:

A = Ω + γ1WΩ + φk + γ2Wk + γ3WA

= (I − γ3W )−1Ω + γ1(I − γ3W )−1WΩ + φ(I − γ3W )−1k + γ2(I − γ3W )−1Wk (2.5)

where the parameters γ1, γ2 and γ3 have been previously described, A is the N × 1 vector of

logarithms of the technology, Ω = Ω0 + ιNµt is the N × 1 vector of logarithms of the exogenous

technological progress with Ω0 = (ln Ω10, . . . , ln ΩN0)′ and ιN being a N × 1 vector of ones, k is

the N × 1 vector of of logarithms of the capital per worker, and W is the N ×N spatial weight

matrix that describes the spatial arrangement of the regions.

5We return to this issue in section 3.1, where we discuss simple identification strategies for the growth-initial
equation we eventually estimate.
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Le us now denote by w
(r)
ij the row i and column j element of matrix W r. Notice that, since

lnAit =
N∑
j=1

∞∑
r=0

γr3w
(r)
ij ln Ωjt + γ1

N∑
j=1

∞∑
r=0

γr3w
(r+1)
ij ln Ωjt + φ

N∑
j=1

∞∑
r=0

γr3w
(r)
ij ln kjt

+ γ2

N∑
j=1

∞∑
r=0

γr3w
(r+1)
ij ln kjt

=
N∑
j=1

ln Ω

∞∑
r=0

γr3w
(r)
ij

jt +
N∑
j=1

ln Ω
γ1
γ3

∑∞
r=1 γ

r
3w

(r)
ij

jt +
N∑
j=1

ln k
φ
∞∑
r=0

γr3w
(r)
ij

jt +
N∑
j=1

ln k

γ2
γ3

∞∑
r=1

γr3w
(r)
ij

jt ,

we may rewrite 2.5 as

Ait =
N∏
j=1

Ω

∞∑
r=0

γr3w
(r)
ij

jt

N∏
j=1

Ω

γ1
γ3

∞∑
r=1

γr3w
(r)
ij

jt

N∏
j=1

k
φ
∞∑
r=0

γr3w
(r)
ij

jt

N∏
j=1

k

γ2
γ3

∞∑
r=1

γr3w
(r)
ij

jt

= Ω
1+
(
γ3+γ1
γ3

)∑∞
r=1 γ

r
3w

(r)
ii

it

N∏
j 6=i

Ω

(
γ3+γ1
γ3

)∑∞
r=1 γ

r
3w

(r)
ij

jt k
φ+
(
φγ3+γ2
γ3

)∑∞
r=1 γ

r
3w

(r)
ii

it

N∏
j 6=i

k

(
φγ3+γ2
γ3

)∑∞
r=1 γ

r
3w

(r)
ij

jt

by using
N∏
j=1

Ω
w

(0)
ij

jt = Ωit and
N∏
j=1

k
φw

(0)
ij

jt = kφit.

Also, let us now define uii = α+φ+

(
φγ3 + γ2

γ3

) ∞∑
r=1

γr3w
(r)
ii and uij =

(
φγ3 + γ2

γ3

) ∞∑
r=1

γr3w
(r)
ij ,

with uii +
N∑
j 6=i

uij =
N∑
j=1

uij = α + φ+
φγ3 + γ2

1− γ3

= α +
φ+ γ2

1− γ3

. Then, given that yit = Aitk
α
it,

yit = Ω
1+
(

(γ3+γ1)(uii−α−φ)

(φγ3+γ2)

)
it

N∏
j 6=i

Ω
(γ3+γ1)uij
φγ3+γ2

jt kuiiit

N∏
j 6=i

k
uij
jt (2.6)

Notice that “this model implies spatial heterogeneity in the parameters of the production

function”, a feature shared with that of Ertur and Koch (2007, p. 1037). Also, in contrast to

the local contagion models of López-Bazo et al. (2004) and Egger and Pfaffermayr (2006), both

ours and that of Ertur and Koch (2007) are models of global contagion (Anselin, 2003). We

differ, however, in that whereas in their case there are no (global) spatial externalities unless

γ3 6= 0, there still are here if either γ1 6= 0 or γ2 6= 0 (albeit of a local nature). This is because
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our model features both global and local contagion. We also differ in that it is no longer the

case that “if there are no physical capital externalities, i.e., φ = 0, we have uii = α and uij = 0,

and then the production function is written in the usual form” (as in e.g. Mankiw et al. 1992

and Islam 1995). As previously pointed out, here we further require that γ1 = γ2 = γ3 = 0.

2.4 The Steady State equation

To derive the equation describing the output per worker of region i at the steady state,

we proceed in the following way. First we rewrite the production function in matrix form,

y = A+αk, and substitute the technology by its expression in 2.5. We then pre-multiply both

sides of the resulting equation by I − γ3W to obtain (provided that γ3 6= 0 and 1/γ3 is not an

eigenvalue of W )

y = Ω + γ1WΩ + (α + φ)k + (γ2 − αγ3)Wk + γ3Wy (2.7)

Lastly, we replace in this equation the log of the capital per worker in region i by its log value at

the steady state, ln k∗it. To this end, we start by noting that the evolution of capital is governed

by the following dynamic equation:

·
kit = siyit − (ni + δ)kit (2.8)

where the dot over a variable denotes its derivative with respect to time, si is the fraction of

output saved, ni is the growth rate of labour, and δ is the annual rate of depreciation of capital

(common to all regions). Given that production shows decreasing returns to scale, equation

2.8 implies that the capital-output ratio is constant and converges to a balanced growth rate

g defined by

·
kit
kit

=
·

ln yit =
·

ln kit = g =
µ (1 + γ1)

(1− γ3)(1− α)− φ− γ2

(see appendix A). Also, it

can be shown that, given a balanced growth rate g and 2.8 (see e.g. Barro and Sala-i-Martin,
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2003),
k∗it
y∗it

=
si

ni + δ + g
and ln k∗it = ln y∗it + ln

(
si

ni + δ + g

)
.6

What is thus left is to introduce in 2.7 (rewritten for economy i rather than in matrix form)

the expression obtained for the log of the capital per worker in region i at the steady state.

In doing so, we obtain the equation describing the output per worker of region i at the steady

state:

ln y∗it =
ln Ωit

1− α− φ
+

γ1

1− α− φ

N∑
j=1

wij ln Ωjt +
α + φ

1− α− φ
ln

(
si

ni + δ + g

)

+
γ2 − αγ3

1− α− φ

N∑
j=1

wij

(
si

ni + δ + g

)
+

(1− α)γ3 + γ2

1− α− φ

N∑
j=1

wij ln y∗jt

(2.9)

Notice that this equation differs from that obtained by Ertur and Koch (2007) in two

main features (beyond the appearance of γ2), reflecting ultimately differences in the assumed

technology. First, the heterogeneous exogenous technological progress, since Ωit is assumed to

be Ωt in Ertur and Koch (2007). Second, the term
γ1

(1− α− φ)

N∑
j=1

wij ln Ωjt, which is missing

in their steady state equation because they assume that there are no spatial externalities in the

exogenous technological progress. More generally, these features of our model are also absent

in the above mentioned growth studies (López-Bazo et al., 2004; Egger and Pfaffermayr, 2006;

Fingleton and López-Bazo, 2006; Pfaffermayr, 2009, 2012).

6It is also interesting to note that, if we compute the marginal productivity of capital,

·
kit
kit

= si
yit
kit
− (ni + δ),

using the expression defining yit in 2.6, we obtain

·
kit
kit

= siΩ
1+

(
(γ3+γ1)(uii−α−φ)

(φγ3+γ2)

)
it

N∏
j 6=i

Ω
(γ3+γ1)uij
φγ3+γ2

jt kuii−1it

N∏
j 6=i

k
uij
jt −

(ni + g). Therefore, provided that α+
φ+ γ2
1− γ3

< 1, there are diminishing returns to the capital, as in the model

of Ertur and Koch (2007, p. 1039). We differ, however, in that in our case it is not only the variations in capital
what make “the rate of growth [to vary and converge] to its own steady state”, but also the variations in the
exogenous technological progress.
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2.5 The growth-initial equation

In the standard, non-spatial growth models (see e.g. Barro and Sala-i-Martin, 2003), the analog

of equation 2.9 gives an expression for the output per worker in the steady state that does not

depend on the output per worker in the steady state of the other economies (i.e., the term

(1− α)γ3 + γ2

1− α− φ

N∑
j=1

wij ln y∗jt is missing). Thus, a log-linear approximation to the dynamics

around the steady state using a Taylor expansion produces a growth-initial regression equation

that can be estimated using the appropriate method. In our case, however, this approach would

produce a rather complex system of first-order differential linear equations whose solution is not

directly estimable due to the presence of variables at the steady state (Egger and Pfaffermayr,

2006, for example, approximate them using a set of exogenous variables). In particular, a log

linearisation of the marginal productivity of capital,

·
kit
kit

, around the steady state yields (see

appendix B)

·
kit
kit

= g + (uii − 1)(ni + δ + g) (ln ki(t)− ln k∗it) +
N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)
(2.10)

Notice that this result coincides with the one obtained by Ertur and Koch (2007).

To tackle this issue, Ertur and Koch (2007) hypothesise that the differences between the

observed and the steady state values of the capital and output per worker across regions

correspond to the following expressions:

ln yit − ln y∗it = Θj

(
ln yjt − ln y∗jt

)
ln kit − ln k∗it = Φj

(
ln kjt − ln k∗jt

) (2.11)

This yields the following speed of convergence (see appendix C):

d ln yit
dt

= g − λi (ln yit − ln y∗it) (2.12)
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with

λi =

∑N
j=1 uij

1
Φj

(nj + g + δ)∑N
j=1 uij

1
Φj

−
N∑
j=1

uij(nj + δ + g)
1

Θj

(2.13)

Solving the differential equation in 2.12 for ln yit (see appendix D), evaluating the solution at

t = t2:

ln yit2 = g
(
t2 − t1e−λiτ

)
− e−λiτ ln yit1 + (1− e−λiτ ) ln y∗i0 (2.14)

with τ = t2 − t1. In particular, under the assumption that the speed of convergence is

homogeneous across regions (λi = λ for i = 1, · · · , N):

ln yit2 = g
(
t2 − t1e−λτ

)
− e−λτ ln yit1 + (1− e−λτ ) ln y∗i0 (2.15)

At this point it is convenient to write the previous expression in matrix form:

y(t2) = g
(
t2 − t1e−λτ

)
ιN −

(
1− e−λτ

)
y(t1) +

(
1− e−λτ

)
y∗(0) (2.16)

where y(t2) is a N × 1 vector containing the log of the outcome per worker at t2, ιN is a N × 1

vector of ones, y(t1) is a N × 1 vector containing the log of the outcome per worker at t1, and

y∗(0) is a N × 1 vector containing the log of the initial level of output per worker at the steady

state. The reason for this is that facilitates replacing y∗(0) by 2.9 at t = 0, which, in matrix

form, is:

y∗(0) = (I − ρW )−1

[
1

1− α− φ
Ω(0) +

γ1

1− α− φ
WΩ(0) +

α + φ

1− α− φ
S +

γ2 − αγ3

1− α− φ
WS

]
(2.17)

where ρ =
(1− α)γ3 + γ2

1− α− φ
and S =

{
ln

(
si

ni + δ + g

)}
i=1,...,N

.

Thus, we introduce 2.17 in 2.16 and pre-multiply both sides of the resulting equation by
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I − ρW to obtain:

y(t2) = g(1− ρ)
(
t2 − t1e−λτ

)
ιN + e−λτ (I − ρW ) y(t1) + ρWy(t2)

+
(
1− e−λτ

) [ 1

1− α− φ
Ω(0) +

γ1

1− α− φ
WΩ(0) +

α + φ

1− α− φ
S +

γ2 − αγ3

1− α− φ
WS

]
(2.18)

Alternatively, we can rewrite this equation for country i as

ln yit2 = e−λτ ln yit1 − ρe−λτ
N∑
j=1

wij ln yjt1 + ρ

N∑
j=1

wij ln yjt2

+

(
1− e−λτ

)
(α + φ)

1− α− φ
ln si −

(
1− e−λτ

)
(α + φ)

1− α− φ
ln(ni + δ + g)

+

(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ

N∑
j=1

wij ln sj −
(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ

N∑
j=1

wij ln(nj + δ + g)

+

((
1− e−λτ

)
1− α− φ

ln Ωi0

)
+

((
1− e−λτ

)
γ1

1− α− φ

N∑
j=1

wij ln Ωj0

)

+ g(1− ρ)
(
t2 − t1e−λτ

)
(2.19)

3 Empirical results

3.1 Model specification and identification strategies

To derive our econometric specification, notice that equation 2.19 (plus an i.i.d. shock ε and

under the assumption that the speed of convergence is identical for all the economies, λi = λ)

corresponds to the spatial Durbin dynamic panel model with individual-specific effects and
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their spatial spillovers:

yit = γ1yi,t−1 + γ2

N∑
j=1

wijyj,t−1 + ρ
N∑
j=1

wijyjt + xit1β1 + xit2β2

+
N∑
j=1

wijxjt1θ1 +
N∑
j=1

wijxjt2θ2 + µi +
N∑
j=1

wijαj + ft + εit (3.1)

where yit = ln yt2 , yi,t−1 = ln yt1 , xit1 = ln si, xit2 = ln(ni + δ + g), γ1 = e−λτ , γ2 =

−ρe−λτ , β1 =

(
1− e−λτ

)
(α + φ)

1− α− φ
, β2 = −

(
1− e−λτ

)
(α + φ)

1− α− φ
, θ1 =

(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ
,

θ2 = −
(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ
, µi =

(
1− e−λτ

)
1− α− φ

ln Ωi0, αi =

(
1− e−λτ

)
γ1

1− α− φ
ln Ωi0 and ft =

g(1− ρ)
(
t2 − t1e−λτ

)
.

This means that equation 3.1 corresponds to the model specification discussed by Lee and Yu

(2016), except that their model does not distinguishes the spatial counterparts of the individual

effects. In other words, their individual effects correspond to µi +
N∑
j=1

wijαj in 3.1. In fact, in

our model the individual effects and their spatial counterparts are proportional (by a rate γ1).

This is therefore a particular case of the more general specification proposed by Miranda et al.

(2017a).

To distinguish the individual effects from their spatial spillovers, we assume a correlated

random effects specification for the individual effects (µi) and their spatial spillovers (αi). This

means making use of the following correlation functions (Mundlak, 1978; Chamberlain, 1982):

µi = ci + πµ1

(
1

T

T∑
t=1

xit1

)
+ πµ2

(
1

T

T∑
t=1

xit1

)
+ υµi

αi = πα1

(
1

T

T∑
t=1

xit1

)
+ πα2

(
1

T

T∑
t=1

xit2

)
+ υαi,

(3.2)

where ci is the constant term to be estimated, πµ1, πµ2, πα1 and πα2 are the parameters

associated with the period-means of the regressors, and υµi and υαi are random error terms

with E(υµi) = 0 = E(υαi), V ar(υµi) = σ2
µ, V ar(υαi) = σ2

α and Cov(υµi, υαi) = σµαi.

The last thing to notice about our econometric specification is that not all the implied
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parameters (ρ, λ, α, φ, γ1, γ2, γ3, and ln Ωi0) are identified. To be precise, we do obtain a

direct estimate of ρ from 3.1 and can easily obtain an estimate of λ from γ1. Further, we

can obtain an estimate of γ1 by regressing αi on µi. These parameters are thus identified. In

contrast, we cannot obtain a single estimate of γ3 (since this requires ρ̂, γ1, β1 or β2, and θ1 or θ2)

and ln Ωi0 (since this requires γ1, µi and β1 or β2) because these parameters are overidentified.

Also, we cannot identify α, φ and γ2 (only α + φ and γ2 − αγ3). The under-identification

problem here, as previously pointed out, is that we cannot separate the effect that, as an input

of the production function, the stock of physical capital has on the output (i.e., α) from the

effect that it has as a driver of the technology (i.e., φ). Neither can we separate the effect that

the own stock of physical capital has on the technology and, subsequently, the output (i.e.,

φ), from that of the neighbouring economies (i.e., γ2). Still, there are ways to circumvent this

identification problem.

One way is to modify the specification of the model. There are no identification

problem, for example, if we are willing to assume that the stock of physical capital enters

the technological progress lagged one period. That is, if we are willing to assume that

Ait = Ωit

N∏
j 6=i

Ω
γ1wij
jt kφit−1

N∏
j 6=i

k
γ2wij
jt−1

N∏
j 6=i

A
γ3wij
jt (see, in contrast, equation 2.4). Neither there are

if we argue that different arguments of the technology require different weight matrices. In

mathematical terms, this means assuming that Ait = Ωit

N∏
j 6=i

Ω
γ1wΩ

ij

jt kφit

N∏
j 6=i

k
γ2wkij
jt1

N∏
j 6=i

A
γ3wAij
jt , where

wΩ
ij, w

k
ij and wA denote different weight matrices (see e.g. Lee and Yu, 2016).

These approaches, however, involve the derivation of a new model (the steady state equation

and the speed of convergence, for example, would surely be altered) and/or require additional

data to construct the weight matrices (in our empirical application, we may for example need

data on bilateral trade flows and geographical distances between the EU regions). We thus

leave these approaches for future research and concentrate here on a less demanding approach

to identification. Namely, the use of appropriate constraints on the set of parameters (Ertur

and Koch, 2007).

Equation 3.1 yields two main constraints between the parameters: β1 = −β2 and θ1 = −θ2

(see also Ertur and Koch, 2007). Thus, by imposing these constraints in 3.1, we obtain a
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“restricted” version of our model specification that, provided that we can find an additional

constraint, is identified. This means that, if the data supports that β1 = −β2 and θ1 = −θ2,

then γ3 and ln Ωi0 are identified and we only require an additional constraint to achieve the

identification of the rest of parameters. One may be willing to assume, for example, that the

impact of the own physical stock and that of the other economies in the level of technology is

the same (i.e., φ = γ2). If that were the case, we may obtain an estimate of α and φ = γ2 from

γ̂3, β1 and θ1. However, since our assumed technology encompasses that of López-Bazo et al.

(2004) and Ertur and Koch (2007), we find that it is of greater interest to constrain one of the

unidentified implied parameters to be consistent with either the model of López-Bazo et al.

(2004) or that of Ertur and Koch (2007), and then obtain an estimate of the rest of implied

parameters. Thus, under the assumption that the technology assumed by López-Bazo et al.

(2004) is the appropriate (i.e., φ = 0, we can obtain an estimate of α and γ2, whereas under

the assumption that the technology assumed by Ertur and Koch (2007) is the appropriate (i.e.,

γ2 = 0), we can obtain an estimate of α and φ. Finding reasonable and statistically significant

values for these estimates may help to assess the validity of our model against these alternatives.

3.2 Estimates from EU-NUTS2 regions

We use EU NUTS2 regional data from Cambridge Econometrics to estimate the model given

by 3.1 and 3.2. The original data set covers 263 regions across 15 countries (Austria, Belgium,

Germany, Denmark, Greece, Finland, France, Ireland, Italy, the Netherlands, Norway, Portugal,

Spain, Sweden and the United Kingdom) over the period 1980 to 2015. However, for our final

sample we basically considered continental regions (Spanish, French and Italian islands, for

example, were not included) and dropped the eastern Lander and Berlin as well as the Dutch

region of Flevoland (because of missing data for the 1980s). We end up dealing with 193 regions.

As for the time dimension, we use time intervals of 5 years —see, among others, Elhorst et al.

(2010); Ho et al. (2013); Lee and Yu (2016). Our starting point is 1980 and the final year is

2015, thus resulting in 7 time periods and a balanced panel dataset.

The dependent variable is the real GDP per capita (real GDP at 2005 constant prices over
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total population, in thousands of people), s is the ratio between investment expenditures and

gross value-added (at 2005 constant prices and as a percentage), and n is the growth rate of the

working population over time (computed as in Islam 1995). As it is common in the literature

(see e.g. Mankiw et al., 1992; Islam, 1995; Ertur and Koch, 2007), we assume that δ+g = 0.05.

Notice also that time dummies were included to account for ft, but their coefficient estimates

are not reported to save space.

[Insert Table 1 about here]

Table 1 provide descriptive statistics of these variables for the 6 periods effectively used in

estimation (due to the inclusion of the lagged dependent variable in the model). If we compare

the reported values with those reported by Ho et al. (2013) for 26 OECD countries over the

period 1970 to 2005, we can see that most regions have a real outcome below the average of

the OECD countries (the observed differences in means are way beyond the obvious differences

that may arise due to the differences in time periods and/or measurement units). It is also

interesting to note that the savings rate seems to be larger and the growth rate of the working

population smaller in the European regions than in the OECD countries.

We estimate the model (both the unrestricted and restricted versions) using the approach

and model specifications of Lee and Yu (2016) and Miranda et al. (2017a). We use the first as

a benchmark for our basic parameters (γ1, γ2, ρ, β1, β2, θ1 and θ2, which, since all the variables

are in logs, can be interpreted as elasticities) and the second to obtain the whole set of estimates

(i.e., the basic ones plus those appearing in the correlation functions: ci, πµ1, πµ2, πα1 and πα2);

test the restricted version of the model (i.e., testing the constraints β1 = −β2 and θ1 = −θ2);

and estimate some of the unidentified implied parameters (using the restricted version of the

model and, when required, imposing an additional constraint). In essence, this is also how we

have organised the discussion of the results. We will start with an analysis of the estimates

of the basic and correlation functions parameters (plus ρ) in the unrestricted and restricted

versions of the model, then will go on with the estimates of the implied parameters, and will

conclude with a description of the geographical distribution of ln Ω̂i0 (the estimated “unobserved
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productivity” of the EU regions) and its estimated spatial spillover (γ̂1

N∑
j=1

wij ln Ω̂j0).

[Insert Table 2 about here]

We report the estimates of the unrestricted version of the model in the last two columns of

Table 2. The first column was obtained using the approach and model specification of Lee and

Yu (2016), whereas the second was obtained using that Miranda et al. (2017a). Interestingly,

both sets of estimates provide essentially the same picture. First, the spatial and time lagged

dependent variables (
N∑
j=1

wijyj,t and yi,t−1, respectively) have a high and positive coefficient,

whereas the spatially weighted lagged dependent variable (
N∑
j=1

wijyj,t−1) has a negative and

smaller coefficient (see also Ho et al., 2013; Lee and Yu, 2016). The statistical significance of

these parameters indicates that the level of GDP per capita of the European regions is largely

determined by its past GDP per capita and the current and past GDP per capita of their

neighbours. In other words, the richest areas are likely to stand rich whereas the poorest ones

can only (partially) catch up if they are geographically close to rich areas. Second, the saving

rate is not statistically significant and the growth rate of labour is only statistically significant

when using the approach of Miranda et al. (2017a). Thus, these factors may not directly

contribute to the growth of the European regions. However, the saving rate of the neighbours

does show the expected positive and statistically significant effect. Third, the (mean) growth

rate of labour and its spatial counterpart are statistically significant variables in the correlations

functions. In addition, all the variance components are statistically significant. This supports

our correlated random effects model specification. In particular, there is evidence of correlation

between the individual effects and the covariates (since πµ2 is statistically significant) and there

is evidence of spatial contagion in the individual effects (since πα2 is statistically significant).

Our estimates of the basic parameters are largely consistent with those reported by

Pfaffermayr (2009), using an analogous sample of regions (plus Switzerland’s regions) and

an earlier period of analysis, and Andreano et al. (2017), using an analogous sample and period

of analysis. In contrast, we find some differences with those reported by Basile (2008), who
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consider an earlier period of analysis (and do not consider Norway’s regions). To be precise,

the signs of β1, β2 and θ1 concur, but the statistical significance differs. Yet we find a similar

statistically significant value for ρ.7

[Insert Table 3 about here]

As for the estimates of the restricted version of the model, we report them in the last two

columns of Table 2. Again, we report estimates based on Lee and Yu (2016) in the first column

and estimates based on Miranda et al. (2017a) in the second. It should be noted, however, that

we only find weak evidence supporting the restricted model. Although the sum of θ1 and θ2 is

not statistically different from zero at standard levels (the Wald test statistic is 1.95, with a

p-value of 0.16), the sum of β1 and β2 (the Wald test statistic is 3.33, with a p-value of 0.07)

and the joint test (the Wald test statistic is 13.62, with a p-value of 0.00) clearly reject the

null. This may explain why the estimates of β = β1 = −β2 and θ = θ1 = −θ2 yield opposite

signs to what is usually found in the literature (Ertur and Koch, 2007; Elhorst et al., 2010).

[Insert Table 4 about here]

With this in mind, next we consider the estimated implied parameters, which are reported

in Table 4. In particular, the first block of Table 4 reports results from the unrestricted model

on those parameters that are directly identified from equation 3.1, λ and γ1 (results on ρ

have been previously discussed), whereas the second block reports these parameters but now

estimated from the restricted model, as well as one of the parameters that is only identified

in the restricted model, γ3 (ln Ω̂i0 is analysed later). The last block of Table 4 reports results

from our identification strategy. This means that the (first) reported estimates of α and γ2 were

obtained from the restricted model (i.e. imposing the constraints β1 = −β2 and θ1 = −θ2) under

the assumption that the technology considered by López-Bazo et al. (2004) is the appropriate

(i.e., under the additional assumption that φ = 0), whereas the (second) reported estimates of

7Our results also differ from those reported in panel data studies analysing countries rather than regions (see
e.g. Ho et al., 2013; Lee and Yu, 2016). Basically, the estimates and statistical significance of γ1, γ2, ρ and θ2
are similar, but the signs of β1 and β2 are the opposite.
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α and φ were obtained from the restricted model under the assumption that the technology

considered by Ertur and Koch (2007) is the appropriate (i.e., under the additional assumption

that γ2 = 0).

First, the estimated speed of convergence, measured by λ, is around 2% and statistically

significant, which is a standard result in the literature (Barro and Sala-i-Martin, 2003; López-

Bazo et al., 2004; Ertur and Koch, 2007; Lee and Yu, 2016). Second, the impact of the

(unobserved) productivity spillovers, measured by γ1, is negative, statistically significant, and

more than proportional (which is implausible...NO????). Third, these two findings remain

largely the same when the estimates are obtained from the restricted model, except perhaps

that the estimated degree of unobserved technological interdependence is closer to minus one

(the theoretical lower bound???). Fourth, the statistical significance of the degree of observed

technological interdependence, γ3, contradicts the models of Islam (1995) and López-Bazo et al.

(2004). As a caveat, however, its value is substantially smaller (about a half) than the one found

by Ertur and Koch (2007) and Elhorst et al. (2010). Fifth, the estimated parameters obtained

by imposing an additional constraint as an identification strategy are generally not statistically

significant (and the one that is, α yields values outside the theoretical bounds). It is therefore

not possible to determine which technology, that of López-Bazo et al. (2004) or that of Ertur

and Koch (2007) fits the data better.

All in all, these results point to the the existence of spatial spillovers in the unobserved

productivity and the level of technology. In contrast, there is no sign of the capital externalities

found by either López-Bazo et al. (2004) or Ertur and Koch (2007). Also, our estimates support

our model specification against that of Islam (1995) and López-Bazo et al. (2004). On the other

hand, estimates obtained from the simple identification strategy we devised do not allow us to

discriminate between the technology assumed by López-Bazo et al. (2004) and that assumed

by Ertur and Koch (2007).

[Insert Figure 1 about here]

To conclude our empirical analysis, we report the geographical distribution of the estimated

“unobserved productivity” and its spatial spillover (to reiterate, obtained from the restricted
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model) in Figure 1. In particular, Figure 1 presents a map of the European regions considered

and the values of these statistics grouped by quantiles: Figure 1a reports ln Ω̂i0 (the “unobserved

productivity”) whereas Figure 1b reports γ̂1

N∑
j=1

wij ln Ω̂j0 (the spatial spillover of the the

“unobserved productivity”, that is, the impact on the GDP per capita of unit i of all the

units neighbouring i having their “unobserved productivity”).

Results indicate that the regions with the lowest estimated “unobserved productivity” are

mostly located in Scandinavia (Finland and Sweden, but also the North of Norway), Denmark,

Scotland, Northern Ireland, Central-East of France, Austria, and the South-West (Portugal

and Spain) and South-East (South of Italy and Greece) of Europe. Figure 1a also shows that

the geographical distribution of the higher estimated “unobserved productivity” largely follows

the so-called “blue banana” (from the South West of the UK to the South-West of Germany,

thus covering the North of France and the Benelux), plus the Mediterranean regions of the

South-West of France and the North of Italy. It is also worth noting the high values found in

the Southern areas of Ireland and Norway.

Most of the regions in the high productivity group can be qualified as “rich”, meaning here

that their average GDP per capita over the period is in the upper quantile of the distribution.

On the other hand, the same criterion would lead us to qualify most of the regions with low

estimated productivities as “poor”. Thus, it seems that richer/poorer regions tend to have

higher/lower (unobserved) productivities. Notice, however, that the marginal effect of ln Ωi0 on

the GDP per capita also depends on the values of (I − ρW )−1, γ1 and γ2W (Debarsy, 2012).

As for the spillovers associated with the “unobserved productivity”, Figure 1b reveals that

the pattern tends to reverse mirror the one found for the estimated “unobserved productivity”.

This is expected given the negative and statistically significant estimate found for γ̂1. Largest

values are found in the Northern regions (i.e., Ireland, the UK Midlands, Scandinavia and

Denmark), but also in the East (i.e., Austria) and South (Portugal, Center and West of Spain,

South of Italy and Greece). This means that these are (mostly rich) regions whose output per

capita is more impacted by the “unobserved productivity” of its neighbours. South of England

and Norway, East Germany, the South-East of France, North-East of Spain and the North
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of Italy, on the other hand, stand as the areas with the lowest spillovers. This means that

these are regions whose ouput per capita is barely affected by the “unobserved productivity”

of its neighbours. Since these are generally regions with low levels of GDP per capita and

“unobserved productivity”, our results indicate that poor regions are unlikely to increase their

wealth via spillovers effects (unless these originate from the saving rates).

4 Conclusions

We present a growth model that extends previous knowledge-spillovers models in several

directions. First, we do not assume a common exogenous technological progress but account

for heterogeneity in the initial level of technology. Second, we assume that the technological

progress depends not only on the stock of physical capital and the stock of knowledge of the

other economies, but also on the physical capital and the (unobserved) initial level of technology

of the other economies. Thus, our assumed technology combines the alternative sources of

spatial externalities considered in previous models of relative location with the unobserved

heterogeneity that characterises previous models of absolute location.

We use EU-NUTS2 regional information from Cambridge Econometrics to test whether

the data supports the main features of our growth model. In particular, our econometric

specification is derived from the growth-initial equation of the model and takes the form of a

spatial Durbin dynamic panel model with spatially weighted individual effects. As a downside,

some of the implied parameters of the model are not identified. However, we discuss alternative

ways to circumvent this limitation.

We estimate the model by QML using a correlated random effects specification for the

individual effects and their spatial spillovers. Results support our model specification. In

particular, we find evidence of the existence of spatial spillovers arising from the level of

technology, but not from the investment in capital. Also, our estimates indicate that the level of

GDP per capita of the European regions is largely determined by its past GDP per capita and

the current and past GDP per capita of their neighbours. Further, richest areas (e.g., the “blue
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banana”) are likely to stand rich because of their higher “unobserved productivity” and/or

higher spillovers in the “unobserved productivity”. Thus, poor regions can only (partially)

catch up if they are geographically close to rich areas whose “unobserved productivity” spills

over the neighbouring regions.
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Table 1: Descriptive statistics.

Variable Mean SD Min P25 Median P75 Max

GDP 24,205 9,594 5,846 18,159 22,890 28,058 97,112
s 23.80 4.82 8.96 20.94 23.53 26.10 46.30

n+ δ + g 0.06 0.01 0.02 0.05 0.06 0.06 0.10

Note: Number of observations = 193 × 6 = 1, 158. GDP is real GDP
(at 2005 constant prices, in Euros) per capita (using total population, in
thousands of people). s is the ratio between investment expenditures and
gross value-added (as a percentage and at 2005 constant prices, in Euros).
n is is the working-age population growth rate (computed as in Islam 1995)
and δ + g = 0.05 (as in e.g. Mankiw et al., 1992; Islam, 1995; Ertur and
Koch, 2007).
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Table 2: QML estimates.

Variable Parameter Estimates I Estimates II

yi,t−1 γ1 0.7402∗∗∗ 0.8850∗∗∗

(0.0210) (0.0178)
N∑
j=1

wijyj,t−1 γ2

−0.3697∗∗∗

(0.0400)

−0.4568∗∗∗

(0.0291)

N∑
j=1

wijyj,t ρ
0.5147∗∗∗

(0.0349)

0.5644∗∗∗

(0.0290)

ln sit β1 0.0104 −0.0084
(0.0142) (0.0131)

ln(nit + δ + g) β2 0.0181 0.0428∗∗∗

(0.0132) (0.0144)
N∑
j=1

wij ln sjt θ1
0.0146∗∗∗

(0.0196)

0.0450∗∗

(0.0177)

N∑
j=1

wij ln(njt + δ + g) θ2
−0.0279

(0.0178)

−0.0110

(0.0192)

ln sit πµ1 −0.0316
(0.0241)

ln(njt + δ + g) πµ2 0.0731∗∗

(0.0335)
N∑
j=1

wijln sjt πα1

−0.0011

(0.0359)

N∑
j=1

wijln(njt + δ + g) πα2

−0.0982∗∗

(0.0485)

Variance Components

σµ σα σµα σ2
ε

0.0005∗∗∗ 0.0007∗∗ −0.0004∗ 0.0018∗∗∗

(0.0001) (0.0003) (0.0002) (0.0001)

Note: Estimates I and II were obtained using the methods proposed
by Lee and Yu (2016) and Miranda et al. (2017a), respectively. The
dependent variable is log(GDP ). We denote the time-mean of a
variable with an upper bar. Time dummies included but not reported.
∗ indicates statistically significant at the 10% level, ∗∗ at the 5% level
and ∗∗∗ at the 1% level.
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Table 3: QML estimates (Restricted model).

Variable Parameter Estimates III Estimates IV

yi,t−1 γ1 0.7371∗∗∗ 0.8828∗∗∗

(0.0208) (0.0183)
N∑
j=1

wijyj,t−1 γ2

−0.3650∗∗∗

(0.0400)

−0.4742∗∗∗

(0.0285)

N∑
j=1

wijyj,t ρ
0.5154∗∗∗

(0.0349)

0.5894∗∗∗

(0.0269)

ln

(
sit

nit + δ + g

)
βc

−0.0049

(0.0100)

−0.0240∗∗∗

(0.0100)
N∑
j=1

wij ln

(
sit

nit + δ + g

)
θc

0.0208∗∗∗

(0.0144)

0.0285∗∗

(0.0139)

ln

(
sit

nit + δ + g

)
πµ1

−0.0405∗

(0.0218)
N∑
j=1

wijln

(
sit

nit + δ + g

)
πα1

0.0421

(0.0300)

Variance Components

σµ σα σµα σ2
ε

0.0005∗∗∗ 0.0008∗∗ −0.0005∗∗ 0.0018∗∗∗

(0.0002) (0.0003) (0.0002) (0.0001)

Note: We denote with the upper letter c the constrained parameters. In
particular, β = β1 = −β2 and θ = θ1 = −θ2. Estimates III and IV were
obtained using the methods proposed by Lee and Yu (2016) and Miranda
et al. (2017a), respectively. The dependent variable is log(GDP ). We
denote the time-mean of a variable with an upper bar. Time dummies
included but not reported. ∗ indicates statistically significant at the 10%
level, ∗∗ at the 5% level and ∗∗∗ at the 1% level.
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Table 4: Implied Parameters

Unrestricted model

λ γ1

0.0244∗∗∗ −1.5617∗∗∗

(0.0040) (0.0030)

Restricted model

λ γ1 γ3

0.0244∗∗∗ −1.1997∗∗∗ 0.4355∗∗∗

(0.0040) (0.0004) (0.1415)

Assumed technology α γ2 φ

López-Bazo et al. (2004)
−0.2575∗ 0.1937
(0.1445) (0.1779)

Ertur and Koch (2007)
−0.7024 0.4448
(0.6223) (0.5512)

Note: Results for the “Unrestricted model” were obtained using
the estimates reported in Table 2 (“Estimates II”), whereas
results for the “Restricted model” were obtained using the
estimates reported in Table 3 (“Estimates IV”). Except for
γ1 (OLS estimate from a linear regression without constant),
standard errors were obtained using the delta method. ∗

indicates statistically significant at the 10% level, ∗∗ at the 5%
level and ∗∗∗ at the 1% level.
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Figure 1: Estimated individual effects and their spatial spillovers.

(a) Geographical distribution of lnΩ̂i0.

(b) Geographical distribution of γ̂1

N∑
j=1

wij ln Ω̂j0.
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A The balanced growth rate

From equation 2.6:

ln yit =

[
1 +

(
(γ3 + γ1)(uii − α− φ)

(φγ3 + γ2)

)]
ln Ωit +

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij ln Ωjt + uii ln kit +
N∑
j 6=i

uij ln kjt

Since ln Ωit = ln Ωi0 + µt, then:

d ln yit
dt

=

[
1 +

(
(γ3 + γ1)(uii − α− φ)

(φγ3 + γ2)

)]
µ+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uijµ+ uiig +
N∑
j 6=i

uijg

Also, using uii +
N∑
j 6=i

uij =
N∑
j=1

uij = α +
φ+ γ2

1− γ3

,

d ln yit
dt

=

(
1− (γ3 + γ1)(α + φ)

(φγ3 + γ2)
+

(γ3 + γ1)

(φγ3 + γ2)

(
α(1− γ3) + φ+ γ2

1− γ3

))
µ+

N∑
j=1

uijg = g,

which after some algebra becomes:

(
1 + γ1

1− γ3

)
µ+

(
α(1− γ3) + φ+ γ2

1− γ3

)
g = g

Therefore,

g =
µ (1 + γ1)

(1− γ3)(1− α)− φ− γ2
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B Taylor approximation to the marginal productivity of

capital

The Taylor approximation of

·
kit
kit

around the steady state (k∗1t, · · · , k∗Nt) is

·
kit
kit

=

·
k∗it
k∗it

+
N∑
j=1


∂

(
·
kit/kit

)
∂ ln kjt

∣∣∣∣∣∣∣∣
k∗jt

(
ln kjt − ln k∗jt

)


= g +

∂

(
·
kit/kit

)
∂ ln kit

∣∣∣∣∣∣∣∣
k∗it

(ln kit − ln k∗it) +
N∑
j 6=i


∂

(
·
kit/kit

)
∂ ln kjt

∣∣∣∣∣∣∣∣
k∗jt

(
ln kjt − ln k∗jt

)


Next we calculate the two derivatives involved. First, let us rewrite the marginal

productivity of capital (see footnote 6) as

·
kit
kit

= siΩ
cii
it

N∏
j 6=i

Ω
cij
jt e

(uii−1) ln kit

N∏
j 6=i

euij ln kjt − (ni + δ)

with kuii−1
it = e(uii−1) ln kit , cii = 1 +

(
(γ3 + γ1)(uii − α− φ)

(φγ3 + γ2)

)
and cij =

(γ3 + γ1)uij
φγ3 + γ2

. Thus,

∂

(
·
kit/kit

)
∂ ln kit

∣∣∣∣∣∣∣∣
k∗it

= siΩ
cii
it

N∏
j 6=i

Ω
cij
jt (uii − 1)e(uii−1) ln k∗it

N∏
j 6=i

euij ln k∗jt

Also, given that si

[
y∗it
k∗it

]
− (ni + δ)− g = 0, replacing y∗it by 2.6 at the steady state we obtain

siΩ
cii
it

N∏
j 6=i

Ω
cij
jt

N∏
j 6=i

k∗jt
uij = (ni + δ + g) k∗it

1−uii (B.1)
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Consequently,

∂

(
·
kit/kit

)
∂ ln kit

∣∣∣∣∣∣∣∣
k∗it

= (uii − 1)(ni + δ + g)

Lastly, bearing in mind that
N∏
j 6=i

euij ln k∗jt = e
∑N
j 6=i uij ln k∗jt ,

∂

(
·
kit/kit

)
∂ ln kjt

∣∣∣∣∣∣∣∣
k∗jt

= siΩ
cii
it

N∏
j 6=i

Ω
cij
jt e

uij ln k∗jtuij = uij(ni + δ + g)

Therefore:

·
kit
kit

=
d ln ki(t)

dt
= g + (uii − 1)(ni + δ + g) (ln kit − ln k∗i ) +

N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)

C Speed of convergence

Let us take the total derivative of 2.6:

d ln yit
dt

=

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
d ln Ωit

dt
+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij
d ln Ωjt

dt

+ uii
d ln kit
dt

+
N∑
j 6=i

uij
d ln kjt
dt
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Given that
d ln Ωit

dt
=
d ln Ωjt

dt
= µ, we concentrate on the derivatives with respect to k. To this

end, let us consider the final result of appendix B:

d ln kit
dt

= g + (uii − 1)(ni + δ + g) (ln kit − ln k∗it) +
N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)
= g − (ni + δ + g) (ln kit − ln k∗it) + uii(ni + δ + g) (ln kit − ln k∗it)

+
N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)
Then, using equation 2.6

ln yit =

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
ln Ωit +

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij ln Ωjt + uii ln kit +
N∑
j 6=i

uij ln kjt

and its value at the steady state

ln y∗it =

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
ln Ωit +

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij ln Ωjt + uii ln k
∗
it +

N∑
j 6=i

uij ln k∗jt

we obtain

ln yit − ln y∗it = uii(ln kit − ln k∗it) +
N∑
j 6=i

uij(ln kjt − ln k∗jt) (C.1)

Therefore,

d ln kit
dt

= g − (ni + δ + g) (ln kit − ln k∗it) + (ni + δ + g)(ln yit − ln y∗it)
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Plugging the previous result into the total derivative of 2.6:

d ln yit
dt

=

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
µ+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uijµ

+ uii (g − (ni + δ + g) (ln ki(t)− ln k∗i ) + (ni + δ + g)(ln yi − ln y∗i ))

+
N∑
j 6=i

uij
(
g − (nj + δ + g)

(
ln kj(t)− ln k∗j

)
+ (nj + δ + g)(ln yj − ln y∗j )

)
=

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
µ+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uijµ+ uiig +
N∑
j 6=i

uijg

−

(
uii(ni + δ + g) (ln kit − ln k∗it) +

N∑
j 6=i

uij(nj + δ + g))
(
ln kjt − ln k∗jt

))

+

(
uii(ni + δ + g) (ln yit − ln y∗it) +

N∑
j 6=i

uij(nj + δ + g))
(
ln yjt − ln y∗jt

))

The first term in the previous expression corresponds to the balanced growth rate g (see

appendix A). As for the second term, let us assume that, for each economy i, there exists

Λi such that:

N∑
j=1

uij(nj + g + δ)(ln kjt − ln k∗jt) = Λi

(
uii(ln kit − ln k∗it) +

N∑
j 6=i

uij(ln kjt − ln k∗jt)

)

Thus,

d ln yit
dt

= g − Λi

(
uii(ln kit − ln k∗it) +

N∑
j 6=i

uij(ln kjt − ln k∗jt)

)

+ uii(ni + δ + g) (ln yit − ln y∗it) +
N∑
j 6=i

uij(nj + δ + g)
(
ln yjt − ln y∗jt

)
= g − Λi(ln yit − ln y∗it) + uii(ni + δ + g) (ln yit − ln y∗it) +

N∑
j 6=i

uij(nj + δ + g)
(
ln yjt − ln y∗jt

)
where the second expression is obtained by using C.1.

Finally, from the first hypothesis in 2.11 we have that (ln yit − ln y∗it) Θ−1
j = ln yjt − ln y∗jt.
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This allows us to obtain the speed of convergence to the steady state:

d ln yit
dt

= g −

(
Λi − uii(ni + δ + g)−

N∑
j 6=i

uij(nj + δ + g)Θ−1
j

)
(ln yit − ln y∗it)

= g − λi (ln yit − ln y∗it)

What is left is to derive the expressions defining Λi and λi. First, by plugging the second

hypothesis in 2.11, (ln kit − ln k∗it) Φ−1
j = ln kjt − ln k∗jt, into our assumption on the existence of

Λi:

N∑
j=1

uij(nj + g + δ)(ln kjt − ln k∗jt) = Λi

(
uii(ln kit − ln k∗it) +

N∑
j 6=i

uij(ln kjt − ln k∗jt)

)
N∑
j=1

uij(nj + g + δ)(ln kj − ln k∗j ) = Λi

N∑
j=1

uij(ln kj(t)− ln k∗j )

N∑
j=1

uij(nj + g + δ) (ln ki(t)− ln k∗i ) Φ−1
j = Λi

N∑
j=1

uij (ln ki(t)− ln k∗i ) Φ−1
j

Λi =

∑N
j=1 uij

1
Φj

(nj + g + δ)∑N
j=1 uij

1
Φj

(C.2)

Second, plugging the previous result into λi = Λi− uii(ni + δ+ g)−
N∑
j 6=i

uij(nj + δ+ g)Θ−1
j and

assuming that Θ−1
i = 1:

λi = Λi − uii(ni + δ + g)Θ−1
i −

N∑
j 6=i

uij(nj + δ + g)Θ−1
j

λi = Λi −
N∑
j=1

uij(nj + δ + g)Θ−1
j

λi =

∑N
j=1 uij

1
Φj

(nj + g + δ)∑N
j=1 uij

1
Φj

−
N∑
j=1

uij(nj + δ + g)
1

Θj

35



D Differential equation solution

We start by noticing that the steady state in 2.9 can be written as

ln y∗it =
1

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r)
ij ln Ωjt +

γ1

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r+1)
ij ln Ωjt

+

(
α + φ

1− α− φ

) N∑
j=1

∞∑
r=0

ρrw
(r)
ij ln

(
sj

nj + δ + g

)
+

γ2 − αγ3

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r+1)
ij ln

(
sj

nj + δ + g

)

with ρ =
γ2 − αγ3

1− α− φ
. Using this, we can see that

d ln y∗it
dt

=
(1 + γ1)µ

1− α− φ

(
1

1− ρ

)
, since

1

1− ρ
=

1− α− φ
(1− α)(1− γ3)− φ− γ2

, then

d ln y∗it
dt

=

(
1

1− α− φ

)(
1

1− ρ

)
µ+

(
γ1

1− α− φ

)(
1

1− ρ

)
µ = g (D.1)

Notice that D.1 can be seen as another differential equation, which have a particular solution

on ln y∗i0:

ln y∗it = gt+ ln y∗i0 (D.2)

Plugging equation D.2 and 2.12 we obtain:

d ln yit
dt

= g − λi (ln yit − gt− ln y∗i0) (D.3)

We use the integrating factor method to solve the differential equation in D.3. We first reorder

terms and then multiply the equation by the integrating factor e
∫
λidt = eλit to obtain

d

dt

(
eλit ln yit

)
= eλitg + λie

λit (gt+ ln y∗i0)

By integrating on both sides, we obtain the general solution:

ln yit = gt+ ln y∗i0 + Ce−λit
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The particular solution for t = t1 implies that C = (ln yit1 − gt1 − ln y∗i0) eλit1 . Thus, for any t

we have:

ln yit = g
(
t− t1e−λi(t−t1)

)
+ ln yit1e

−λi(t−t1) + (1− e−λi(t−t1)) ln y∗i0
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Andreano, M. S., Benedetti, R., and Postiglione, P. (2017). Spatial regimes in regional

european growth: an iterated spatially weighted regression approach. Quality and Quantity:

International Journal of Methodology, 51(6):2665–2684.

Anselin, L. (2003). Spatial externalities, spatial multipliers, and spatial econometrics.

International Regional Science Review, 26(2):153–166.

Barro, R. J. and Sala-i-Martin, X. (2003). Economic Growth, 2nd Edition. The MIT Press.

Basile, R. (2008). Regional economic growth in Europe: A semiparametric spatial dependence

approach. Papers in Regional Science, 87(4):527–544.

Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of

Econometrics, 18(1):5–46.

De Long, J. B. and Summers, L. (1991). Equipment investment and economic growth. The

Quarterly Journal of Economics, 106(2):445–502.

Debarsy, N. (2012). The mundlak approach in the spatial Durbin panel data model. Spatial

Economic Analysis, 7(1):109–131.

Egger, P. and Pfaffermayr, M. (2006). Spatial convergence. Papers in Regional Science,

85(2):199–215.

Elhorst, P., Piras, G., and Arbia, G. (2010). Growth and convergence in a multiregional model

with spacetime dynamics. Geographical Analysis, 42(3):338–355.

Ertur, C. and Koch, W. (2007). Growth, technological interdependence and spatial externalities:

theory and evidence. Journal of Applied Econometrics, 22(6):1033–1062.

38
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López-Bazo, E., Vayá, E., and Art́ıs, M. (2004). Regional externalities and growth: Evidence

from European regions. Journal of Regional Science, 44(1):43–73.

Mankiw, N. G., Romer, D., and Weil, D. (1992). A contribution to the empirics of economic

growth. The Quarterly Journal of Economics, 107(2):407–437.
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